PHYSICAL REVIEW E

VOLUME 53, NUMBER 4

APRIL 1996

Noise-induced phase transitions in globally coupled active rotators
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We study the nonequilibrium phenomena in a globally coupled active rotator model with mul-
tiplicative noise. It is shown that at the critical values of the noise intensity the system undergoes
noise-induced phase transitions and forms clusters. From the Fokker-Planck equation, which de-
scribes dynamics of the system, we analytically obtain the critical noise intensity at specific values
of the parameter space. Numerical simulations reveal the phase transitions producing peculiar phase
diagrams. The nature of the transitions is also discussed in detail.

PACS number(s): 02.50.—r, 87.10.+€, 05.70.Fh

I. INTRODUCTION

From an intuitive point of view, random forces on a
dynamical system give rise to disordering effects. In dis-
tinction, however, it has been discovered in recent years
a certain class of nonequilibrium phenomena, the noise-
induced phase transitions [1]. The external noise coupled
to the state of the system may drastically change the
stability of the system. In some cases, new stable states
appear under the influence of strong external noise. One
may find examples in a model of biology (2], chemical
reactions (3], optics [4], plasma physics [5], etc., which
have phenomenological justifications [6].

The macroscopic behavior of a globally coupled oscil-
lator model has been studied in various systems. In the
neuronal signal processing, the synchronous oscillations
found in the visual cortex system have been modeled
and understood via coupled phase oscillators [7]. One
may approximate the Josephson-junction array as cou-
pled phase oscillators to describe dynamics of the system
[8]. Examples may also be found in chemical reaction
systems [9] and charge-density waves [10].

The dynamics of coupled oscillators in the weak cou-
pling limit has usually been investigated in the reduced
model to the effective interaction given by the first
Fourier mode [11]. It has been claimed, however [12,13],
that higher Fourier mode interactions are indispensable
for interesting collective dynamics. In [12,13] it has been
shown that the phase oscillator system with interactions
of higher harmonics eventually converges to the clustered
states at some parameter range.

The question on the role of noise in the phase oscillator
system has been raised continuously. It has been shown
in [14] that the additive noise generates the switching
phenomenon of the clustered states of the phase model
with higher Fourier mode interactions. The additive
noise has also been shown to affect the stability of the

*Electronic address: shpark@logos.etri.re.kr

1063-651X/96/53(4)/3425(6)/$10.00 53

states [11,12]. In an active rotator model, a phase model
of either a limit-cycle oscillator or an excitable element
[15], with additive noise shows the transition from mov-
ing (excited) state to stationary (inhibited) state at a
critical noise intensity.

In this paper we try to understand the dynamical ef-
fects of noise in the coupled active rotator model. Instead
of introducing simple additive noise, we assume that the
influence of the environment on the macroscopic proper-
ties of the system is described via the stochastic external
parameter. We introduce a random fluctuation to the
coupling strength and study the nonequilibrium phenom-
ena that cannot be seen in the deterministic case or in the
system with simple additive noise. We show that in the
coupled active rotator system, only with the first Fourier
mode does the multiplicative noise induces a bifurcation
at a critical value of noise intensity, thus forming two sta-
ble clustered states. This is a pure noise effect and shows
a route to the clustering phenomena without introduc-
ing higher Fourier mode interactions. The cases for the
higher Fourier mode driving forces are also considered for
completeness.

In the following section we describe the coupled active
rotator model used in this paper. Section III is devoted
to present the analytical study of the system without in-
trinsic frequency. Results of the numerical simulation are
presented in Sec. IV, showing the phase diagrams of the
system with the higher Fourier mode driving forces in ad-
dition to the first Fourier mode driving force. The nature
of the phase transitions is also discussed with summarized
results in Sec. V.

II. MODEL

A (noiseless) model of N coupled active rotators under
study is expressed by the equation of motion [15,16]

N
de; . .
dtz = w — bsin(ve;) — ZIK” sin(¢; — ¢;), (1)
=
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where ¢;,7 =1, 2,..., N, is the phase of the ith rotator.
w is the intrinsic frequency that is uniformly given to
each rotator. The second term on the right-hand side
of Eq. (1) (from now on we denote this as the b term)
is introduced to mimic the dynamics of stochastic limit-
cycle oscillators or excitable elements [15,16]. We will
consider the case for v = 1, 2, and 3 in this paper. The
third term on the right-hand side of Eq. (1) describes
global coupling, which depends on the phase difference
of two rotators. In the absence of noise, if the coupling is
ferromagnetic, i.e., K;; > 0, then this term gives perfect
synchrony, which means ¢;(t) = ¢(t) for all i. The steady
state of Eq. (1) is the ground state of the system with
the Hamiltonian

H = Z (wd), — — cos(ve;) > ZK‘J cos(¢; — @),

(23)

()

where the (7j) summation is taken over all pairs (each
pair counted only once). For the case of v = 1 and fer-
romagnetic coupling, ¢; dwells on two phases. When
|b/w| > 1, Eq. (2) has a local minimum at ¢; = ¢ =
sin”!(w/b) and each element is at the stable fixed point.
When |b/w| < 1, Eq. (2) has no local minimum, implying
that the system is on the moving phase, i.e., each ¢; is a
rotator with frequency vw? — b2. The b term of Eq. (1)
characterizes the system whether it is on the stationary

state or on the moving state.
Now we assume the uniform ferromagnetic interaction
K;; = K/N > 0. If the system is coupled to a fluctuating
]

oP 0
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environment, the coupling strength then may be assumed
to be a stochastic quantity, which implies

K,

N N

where 7;(t) is a Gaussian white noise characterized by

(mi(t)) =0,
(m:(t)n; (¢')) = 26:56(t — t')

and o measures the intensity of the noise. Thus Eq. (1)
is replaced by the stochastic differential equation

de; 1 N
ﬂ’=w—bgmwmy—ﬁur+aman§:gm¢,-@y

j=1

[K + oni(t)],

3)

Throughout this paper we set K = 1 using a suitable

time unit.

III. ANALYTICAL STUDY OF THE
FOKKER-PLANCK EQUATION

The macroscopic behavior of the system can be de-
scribed by the probability distribution P(¢,t) of ¢; at
time ¢, whose evolution is governed by the Fokker-Planck
equation [17]. In the large-NN limit, the Ito interpreta-
tion of the stochastic differential equation (3) yields the
Fokker-Planck equation

5 = 08 [{w — bsin(vg) — /dqb’ sin(¢ — ¢')n(¢',t) + o2 /d¢' sin(¢ — ¢')n(¢’,t)

x [ cos( - (s, t)} P9, t)] vl [{ [ sinto - s, t)}z P(¢,t)] , (4)

where n(¢,t), the normalized number density of the ro-
tators with phase ¢ at time ¢, is given by

n(¢,t) = Za(@(t) - ¢).

Since ¢;’s are statistically independent for the uniform
interaction P(¢,t) may be identified with n(¢,t). In this
paper we will analyze the steady state of n(¢,t).

When w = 0, the steady state of Eq. (4) is given by
the stationary solution

n(¢) = exp[-U, (¢ — a)]{n(o) exp(Uy ()]

agy LU —a)]}, %)

sin? ¢/

W—S‘f)/

where

1 1—cos¢ .
v = 1
U, (o) o2/ § 52 ln’ sino + In | sin ¢
b ,sinv(¢’ + a)
+02(C,2L +52) /0 sin? ¢/ ©)

and J is the constant probability current, which is deter-
mined by the boundary condition

n(¢ + 2m) = n(4), (7

with a = tan™1(S,/C,). Here C,, and S,, are obtained
by the self-consistent equations

27
C, = /0 d¢ cos ¢ n(¢),

&=A"wmwmm. (8)

In the case of v = 1 the boundary condition (7) gives
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J = 0 because the integral of the last term in Eq. (6) is
periodic, leading to U, (¢ + 2n) = U,(¢). When J = 0

the self-consistent equations (8) reduce to

(cos ) = ETT 5,
(sing) = 0, (9)

where () means an average over ¢ with the weight func-
tion exp[—U,(¢#)]. In this case we can separate Uj(¢)
into symmetric and antisymmetric parts as U;(¢) =

Ui () + Ui (¢) with

. C? + 82 +bC, 1—cos¢ .

Ui (e) = o2(C2 + S2)3/2 n‘ p + In sin ¢|,
a bS,, 1

Ui (¢) =

" 02(C2 + 82)3/2sin¢

Then we obtain
(sing) = Z"l/o exp [—Ui(¢)] sin ¢{1 —exp[2U7 (¢)]}do,

with Z = f02" exp[—U1(¢)]d¢ leading to

sgn((sin ¢)) = sgn(S,).

Thus the self-consistent equations (9) give S,, = 0 and
thus

_ Cntb

Ui(¢) = — 577 In|1 —cosg| +

o2C2 —Cp—b_ .
—az_crnz—._ln|s1n¢[.

(10)

Ui(¢) — —oo as ¢ — 0 or 2r. When 02C2 > b + C,,
Ui(¢) & —oo as ¢ — m. (See Fig. 1.) When 02C2 =
b+C,,, self-consistent equations (9) give C,, = 1, implying
a continuous transition from a one-cluster state to a two-
cluster state: While for o < 0. = v/1 + b n(¢) has a peak
leading to a one-cluster state, for o > o, it has two peaks
leading to a two-cluster state.

Since the Fokker-Planck equation (4) is invariant under
the transformation of ¢ into —¢, we can assume n(¢) as
an even function, i.e., n(—¢) = n(¢). This symmetry
leads to the conditions J = S,, = 0 and thus

o<,

Uy(9)

FIG. 1. Schematic diagram of U,. The solid line is for
o > o. and the dashed line is for o < o..
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Us(d) = —L 1 02C2+20—-Cp . | .
2(¢) = ;—2—0;— n|l —cos¢| + 0—203——ln|sm¢l,
C,+3b
Us(9) = — 552 In|1 —cosg)
o2C2 —Cp —3b .
Uzicglnhm(ﬂ . (11)

The above equations lead to the transitions at o. =
v/1—2b and /1 + 3b for v = 2 and 3, respectively, be-
cause C,, = 1 at the transition points: While for o < o,
n(¢) has a cluster, for o > o. it has two clusters. Figure
2 shows the phase diagram for v = 1, 2, and 3. While
the phase boundaries of v = 1 and 3 are similar, the
phase boundary of v = 2 is different from the others: As
b increases, 0. also increases for v = 1 and 3, but for
v = 2, o, decreases. This different trend comes from the
difference of the role of the b term. For v = 2 the b term
prefers the two-cluster state because the b term is sym-
metric under ¢ — ¢ + w. However, for » = 1 and 3 the b
term prefers the one-cluster state.

IV. NUMERICAL RESULTS

To investigate phase transitions at finite w, we have
performed a numerical simulation of Eq. (3). In the
simulation, we have used the second-order Runge-Kutta
method with discrete time steps of At = 0.01 with ran-
dom initial configurations. At each run, the first 4 x 10*
time steps per spin have been discarded to achieve steady
state and 10° time steps per spin have been used to com-
pute averages. We have restricted w as a unit and con-
sidered the system of size N = 1000.

First, we consider the case v = 1. Figure 3 shows the
phase diagram with w = 1. When ¢ = 0, the system has
a transition point at b = 1. For b > 1, the system is on
a steady state fixed point. For b < 1, the rotators are
all synchronized so that they move in a uniform phase
velocity. As o increases, the phase structure persists up
to some critical value of o, 0., which depends on b. The
region denoted by S, (S4) is where all the elements of
the system are at one (two) fixed angle(s). In the P,
(Pg) state the elements are in a uniform periodic motion

FIG. 2. Phase diagram for w = 0. S, and Sgq represent
one-cluster and two-cluster phases, respectively.
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FIG. 3. Phase diagram obtained by numerical simulation
performed for the system of size N = 1000 when w = 1 and
v =1 S, (Ps) and Sq (Pa) represent one-cluster stationary
(moving) and two-cluster stationary (moving) phases, respec-
tively.

grouping into one (two) cluster(s). On the o = o, line
a phase transition occurs. The single steady fixed point
bifurcates to two steady fixed points so that the system is
split into two clusters, which dwell on either fixed point.
The periodic motion of the system also bifurcates at the
critical value of o. The wholly synchronized rotators are
split into two synchronized clusters.

In the region denoted by Sy in Fig. 3, there exist two
stable clusters of rotators. The location of two stationary
states differs by . One may make an analogy to the spin
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system to understand this phenomena. The Gaussian
white noise with mean zero in the coupling yields the an-
tiferromagnetic interactions as well as the ferromagnetic
ones. The system therefore has an approximate symme-
try ¢; — ¢; + ™ when o is large. When this symmetry
is exact, i.e., in the 0 — oo limit, one expects an equal
intensity of the two clusters. The same argument holds
for the periodic regions. In Fig. 4(d) one can observe
the propagating secondary peak, which is at a distance
7 from the primary one. As o increases, the intensities
of the two peaks become equal. Figures 4(a) and 4(c)
show the time evolution of steady state of n(¢,t) in the
regions of S, and P,, respectively.

As o gets larger, the transition S — P occurs at
smaller value of b, as can be seen in Fig. 3. This reflects
the fact that the random force diminishes the pinning ef-
fect generated by the b term so that the stationary state
can make a transition to the moving state at a smaller
value of b. In contrast to the case of simple additive
noise case, which has been studied by Shinomoto and
Kuramoto [15], there is no nonanalyticity in the phase
boundary. Rather, it continues to the infinite value of o.
When b < 1, one can observe the transitions P, — P,
and P; — S4 consecutively as o increases.

The phase diagram is presented in Fig. 5 when v = 2.
The phase transition of the one-cluster (stationary, mov-
ing) state to the two-cluster state (stationary, moving)
occurs at a smaller value of noise intensity than in the
case of v = 1. Contrary to the case when v = 1, the b
term in Eq. (3) may generate an antiferromagnetic effect.

J

|1 ) |
mis FIG. 4. Time evolutions of
=it n(¢,t) at various phases in
steady state: at (a) v =w =1,
i T— b = 15, and o = 2
- in the one-cluster stationary
0 2 o 4 6 phase (S,); (b) v = w = 1,
b = 05, and ¢ = 15

in the two-cluster stationary
phase (Sa); (c) v w =1,
b = 0.5, and ¢ = 2 in the
one-cluster moving phase (Ps).
d v = w 1, b 0.5,
and o0 = 9 in the two-cluster
moving phase (Pj); (e) v = 3,
w=1,b =15, and 0 = 2
in the three-cluster stationary
phase (S;).
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FIG. 5. Phase diagram obtained by numerical simulation
performed for the system of size N = 1000 when w = 1 and
v=2. 8, (P;) and Sq (Pa) represent one-cluster stationary
(moving) and two-cluster stationary (moving) phases, respec-
tively.

Therefore, the phase transition becomes more sensitive to
the noise term than the case of v = 1.

One can see that when o = 0 there are three stable
states according to the value of b. The single stationary
state in the v = 1 case is now split into single stationary
and double stationary states. This is also due to the anti-
ferromagnetic effects of the b term in Eq. (3). In fact, the
S4 state is not a ground state of Eq. (2) but a metastable
state. However, this metastable state has a large basin
of attraction and thus the system initiated from the ran-
dom configuration goes to the metastable state in steady
state. Also, the multiplicative noise considered in this pa-
per makes the metastability stronger and thus the state
becomes a globally stable state.

One notices that in Fig. 5 the critical transition line
from the stationary states to the moving states is almost
independent of o, i.e., characterized by the b = 1 line.
This comes from the fact that the b term is symmetric
under the translation of ¢ by . When v = 2, therefore,
the noise term does not play a significant role in the tran-
sition from stationary states to moving states as in the
v =1 case.

The results of v = 3 case are depicted in Fig. 6, which
is similar to the case of v = 1. When o = 0, the system
has three stationary states. S; stands for the stationary
state with three clusters [see Fig. 4(e)]. When the b term
dominates the interaction, the system is on the state of
three stationary clusters. This state is also a metastable
state with a larger basin of attraction. In contrast to the
case of v = 2, the multiplicative noise reduces the basin
of attraction, eventually leading to the transition from a
three-cluster state to a one-cluster state. The transition
from a one-cluster state to a two cluster state S, — Sy
and P, — P, is also observed. In Fig. 6, P;, the moving
state with three clusters, does not appear. P; is expected
when b < 1, since it is a moving state. At the same time,
the b term should dominate the interaction to make more
than one cluster. For w = K = 1, which is considered in
this paper, there is no overlapping range of b and o that
satisfies both conditions. It may be possible, however,
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FIG. 6. Phase diagram obtained by numerical simulation
performed for the system of size N = 1000 when w = 1 and
v =3. S, (Ps) and Sq (Pa) represent one-cluster stationary
(moving) and two-cluster stationary (moving) phases, respec-
tively. S; also means three-cluster stationary phase.

to obtain the P, state in another range of parameters.
The b term yields a more ferromagnetic effect than an
antiferromagnetic one for v = 3. Therefore the critical
line from the stationary states to the moving states sen-
sitively depends on o as for the v = 1 case. On the basis
of these results, we expect that the results for any har-
monics with b odd (even) resemble the ones for v = 1

(2)-

V. DISCUSSION

In this paper we considered the nonequilibrium phe-
nomena in a coupled active rotator model with multi-
plicative noise. The stable steady states of the number
density of the rotators were analyzed both analytically
and numerically. The key result in this paper is that at
the critical noise intensity the system is split into two
clusters without higher Fourier mode coupling, which is
a pure noise effect. Therefore, our results exhibit an-
other route to the clustering phenomenon, which cannot
be seen in the deterministic or simple additive noise case.

We also considered the model with higher Fourier
modes of an external source term. One may anticipate
a more complicated rich structure adding higher Fourier
modes of interaction terms. It would be interesting if
our results can be tested in physiological systems. It will
also be interesting to investigate the dynamics of clus-
ters. This may be done by introducing some realistic
parameters such as the time delay of interactions [18].
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